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A B S T R A C T

It is generally accepted that complex memories are stored in distributed representations throughout the

brain, however the mechanisms underlying these representations are not understood. Here, we review

recent findings regarding the subcellular mechanisms implicated in memory formation, which provide

evidence for a dendrite-centered theory of memory. Plasticity-related phenomena which affect synaptic

properties, such as synaptic tagging and capture, synaptic clustering, branch strength potentiation and

spinogenesis provide the foundation for a model of memory storage that relies heavily on processes

operating at the dendrite level. The emerging picture suggests that clusters of functionally related

synapses may serve as key computational and memory storage units in the brain. We discuss both

experimental evidence and theoretical models that support this hypothesis and explore its advantages

for neuronal function.
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1 There are several definitions for the word ‘‘Dendrite’’, depending on the cited

papers. According to Wikipedia, Dendrites (from Greek d?ndron déndron, ‘‘tree’’) are

the branched projections of a neuron that act to propagate the electrochemical

stimulation received from other neural cells to the cell body, or soma, of the neuron

from which the dendrites project. We consider as a single ‘‘dendritic branch’’ the

section contained within two consecutive branch points (or one branch point and

the tip for terminal dendrites) that is not part of trunk.
1. Introduction

The ways in which memories are formed and stored in the brain
remains one of the most exciting mysteries of neuroscience. While
it is generally believed that complex memories are stored in
distributed representations throughout the brain (Hübener and
Bonhoeffer, 2010; Josselyn, 2010; Lashley, 1950), the mechanisms
underlying the formation of these representations are still under
intense scrutiny. Powerful new technologies, such as ligand- and
light-driven neuronal activation systems, have established that the
biophysical correlates of memory (memory engrams) consist of
ensembles of neurons which undergo plasticity during learning,
and are necessary for the expression of memory (Garner et al.,
2012; Han et al., 2007; Josselyn, 2010; Kim et al., 2014; Liu et al.,
2012).

The storage of memories in neuronal populations is believed to
rely on structural and biophysical changes in the synapses between
interconnected neurons. Ramon y Cajal was the first to suggest that
synaptic contacts between neurons could play a role in memory
storage (Ramón y Cajal, 1893) but it wasn’t until the 1940s that the
synaptic potentiation postulate of Donald Hebb was formulated.
According to Hebb’s influential theory, synapses between neurons
are potentiated when they are concurrently activated, and this
mechanism forms the physiological foundation for learning and
memory (Hebb, 1949).

Synaptic modifications however are greatly influenced by the
biophysical and anatomical complexity of their hosting structures,
namely the dendritic branches (Fig. 1). The elaborated morphology
together with the rich repertoire of voltage-gated ionic mecha-
nisms found in dendrites (Häusser et al., 2000; Mainen and
Sejnowski, 1996; Major et al., 2013; Sjöström et al., 2008; Spruston,
2008) influences the integration of synaptic signals and their
forward propagation to the soma, enabling these structures to
exhibit compartmentalized regenerative events (Häusser et al.,
2000; Larkum et al., 2009; Nevian et al., 2007; Schiller et al., 1997;
Wei et al., 2001) and support spatially restricted plasticity (Golding
et al., 2002; Hardie and Spruston, 2009; Losonczy et al., 2008;
Sjöström et al., 2008). These properties furnish dendrites with the
ability to regulate synapse modification in complex, nonlinear
ways thus adding another level of complexity in the memory
formation process.

Within dendrites, an array of plasticity processes, which include
Hebbian long-term potentiation or depression (LTP/LTD), synaptic
tagging and capture (STC), plasticity of intrinsic excitability, local
homeostasis etc., govern the structural re-organization of synaptic
contacts that takes place during memory formation. Many of these
processes act locally, at the level of a dendritic branch or even a
stretch of a dendritic branch (Zhang and Linden, 2003). Spatially
restricted changes in synaptic properties have been proposed to
underlie the formation of local groups or clusters of synaptic
connections in dendritic compartments (Branco and Häusser,
2010). This hypothesis, termed clustered plasticity, has been
associated with increased storage capacity (Poirazi and Mel,
2001) and feature binding (Govindarajan et al., 2006; Legenstein
and Maass, 2011), both of which are important attributes of
memory.

On top of it all, global balancing mechanisms, like homeostatic
plasticity together with the plasticity of inhibitory connections
(Kullmann et al., 2012; Turrigiano and Nelson, 2004; Zhang and
Linden, 2003), ensure a smooth running operation of the neuronal
circuits that capture, encode and store the life events or skills that
we call memories.

In light of the evidence that memory trace formation is
governed by plasticity processes operating at multiple levels,
existing memory theories are being revised and refined (Branco
and Häusser, 2010; Chklovskii et al., 2004; Govindarajan et al.,
2006; Jadi et al., 2014; Redondo and Morris, 2011; Rogerson et al.,
2014). In the view proposed here, memories are stored in small and
distributed overlapping populations of neurons, in which synaptic
clusters in dendritic branches encode for ‘related’ (in time, space or
context) memories (Rogerson et al., 2014; Silva et al., 2009). Thus,
the formation of a new memory trace does not only result in
alterations of the connectivity strengths between neurons in a
network, but also in the spatial arrangement of synapses and the
excitability properties of dendritic branches where they reside
(Chklovskii et al., 2004; Silva et al., 2009; Zhang and Linden, 2003)
(see Fig. 3). Evidence for this hypothesis implies a mechanistic link
between the expression of memory representations at the
neuronal circuit level and the underlying cellular, dendritic and
synaptic components that participate in their formation.

In this review, we discuss experimental and computational
findings that examine how dendritic non-linearlities in conjunc-
tion with local and global plasticity processes shape memory
formation in neuronal circuits.

2. Dendritic branches as key computational elements

In neocortical pyramidal neurons, dendritic branches provide
the physical substrate where synapses are formed and modified
through plasticity operations. Equipped with an array of biophysi-
cal mechanisms, dendrites1 can dynamically modulate local voltage
responses. This allows them to integrate the excitatory postsyn-
aptic potentials (EPSPs) of the afferent synapses that impinge upon
them in sublinear, linear or supralinear ways (Ariav et al., 2003;
Branco and Häusser, 2011; Häusser et al., 2003; Longordo et al.,
2013; Losonczy and Magee, 2006; Poirazi et al., 2003a; Silver,
2010; Yuste, 2011). On one hand, the elaborated biophysical profile
of dendrites, which includes multiple types of voltage-gated
conductances, has been postulated to mediate the linear integra-
tion of distributed synaptic inputs, irrespectively of their location
within the neuron (Cash and Yuste, 1999; Yuste, 2011). On the



Fig. 1. Dendritic structure and plasticity. Each dendritic tree (apical or basal) in pyramidal neurons can be subdivided to a number of dendrites (dendritic subtrees connected

to the apical trunk or the soma). Thin terminal branches are the main targets of excitation in the cerebral cortex. There, synaptic inputs can be organized in the following ways:

(1) they can be localized in the same dendritic branch without specific spatial arrangement (in-branch localization), (2) they can form anatomical clusters, whereby spines

form morphologically distinct groups of several spine heads located in distances less than 5 mm from each other within stretches of a given branch and (3) they can form

functional clusters where spine density is uniform but nearby synapses (located within 10–20 mm) are activated synchronously. The implications of these different

arrangements of connectivity at the dendritic level are discussed in Section 2.
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other hand, the ability of dendritic branches in pyramidal and
other neuron types to support local electrogenesis, evidenced by
the generation of dendritic spikes, has been shown to underlie the
non-linear integration of synaptic inputs.

Based on their primary source, dendritic spikes are distin-
guished in three main types: sodium, calcium and NMDA (N-
methyl-D-aspartate) spikes, all of which have been extensively
documented in pyramidal neurons both in vitro (Ariav et al., 2003;
Gasparini et al., 2004; Golding et al., 2002; Kim et al., 2012;
Losonczy and Magee, 2006; Makara and Magee, 2013; Nevian et al.,
2007; Polsky et al., 2004; Schiller et al., 1997) and in vivo (Lavzin
et al., 2012; Smith et al., 2013). They are characterized as nonlinear,
all-or-none dendritic responses which can propagate actively for
some distance and are often confined within the generating branch
(Antic et al., 2010; Larkum and Zhu, 2002; Schiller et al., 1997,
2000b). This allows the branch, the dendrite or the neuron to
integrate synaptic signals over much longer timescales than
passive integration would allow.

Since the processing capabilities of pyramidal neuron dendrites
are discussed in several excellent reviews (Branco and Häusser,
2010; Häusser et al., 2003; Major et al., 2013; Segev, 2000; Silver,
2010; Spruston, 2008), we highlight just a few of their key features.
Cortical dendrites, perform synaptic integration non-uniformly,
with distal inputs within the same branch being amplified over
larger time windows compared to proximal ones (Branco and
Häusser, 2011). This difference is attributed, by computational
models, to the generation of NMDA-dependent dendritic spikes
which are facilitated when synapses are located near the tip of a
dendritic branch (Branco and Häusser, 2011; Sidiropoulou and
Poirazi, 2012). As a result, distal synapses, which are individually
too weak to significantly influence the somatic voltage, can act
cooperatively to affect the output of the neuron (Schiller et al.,
2000a). A similar nonlinearity that serves as a mechanism for
coincidence detection also depends on NMDA conductances, this
time in the apical tuft dendrites of layer 5 pyramidal neurons
(Larkum et al., 2009). The initiation of dendritic spikes and their
amplitude is, in turn, determined by the magnitude and location of
inhibition that these neurons receive (Jadi et al., 2012).

The above are just a few examples of modeling and
experimental studies suggesting that local spikes enable dendritic
branches to implement nonlinear integration modes (Mel, 1993;
Häusser et al., 2000; Gasparini et al., 2004, Polsky et al., 2004;
Losonczy and Magee, 2006; Makara and Magee, 2013), thus
conferring enhanced flexibility in neuronal information proces-
sing. In order to exploit this additional processing power of
nonlinear dendrites, synaptic input should be such that the whole
range of possible dendritic responses are explored, including the
generation of dendritic spikes. As discussed in Sections 2.1 and 2.2,
the spatial arrangement of synaptic inputs in dendritic branches
can provide a way to realize this goal.

2.1. Effect of spatial synaptic arrangement on dendritic integration:

distributed connectivity and linear integration

Distributed synaptic inputs, irrespectively of their location
within the neuron, have been suggested to summate linearly, a
result attributed to the elaborated biophysical profile of pyramidal
neuron dendrites (Cash and Yuste, 1999; Yuste, 2011). This linear
integration mode may be particularly useful when synaptic input
is dispersed uniformly throughout the dendritic tree, for example
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as a result of an essentially random connectivity between neurons
that is dictated by anatomical constraints (Braitenberg and Schüz,
1998). According to this model, the connectivity of neuronal
circuits is determined by the overlap of dendritic arbors and axonal
processes, as dictated by Peters’ rule (Peters et al., 1976). A series of
in vivo imaging studies in sensory areas has provided indirect
support for this model (Chen et al., 2011; Jia et al., 2010; Varga
et al., 2011) by showing that neighboring synapses are tuned to
apparently random input features (but see Section 2.4.3 for an
alternative interpretation).

In a distributed connectivity model like the one discussed
above, a large number of synapses must be activated in order to
induce a postsynaptic spike. The integration of multiple distribut-
ed synaptic inputs within a neuron, however, is negatively affected
by membrane dynamics that create an interference problem.
Synaptic depolarization causes the opening of membrane con-
ductances, thus lowering the membrane resistance and making the
neuron less excitable in response to subsequent synaptic input.
Dendritic spines with high electrical neck resistance have been
suggested to counteract these effects by isolating synaptic inputs
(Segev and Rall, 1998). Alternatively, spatially segregating the
synaptic contacts throughout the dendritic tree may serve as a
mechanism for implementing linear local summation of incoming
signals (Yuste, 2011), however the requirement for a large number
of distributed inputs would also lead to shunting effects. The
distributed connectivity and linear summation model has inspired
a large portion of the early artificial neural network research in the
past decades (Hopfield, 1988; Minsky and Papert, 1969). While
these models overly simplify the function of neurons, they have
been instrumental in studying memory storage and have
established synaptic weight changes caused by plasticity as a
valid mechanism of learning in artificial neural networks (McClel-
land and Rumelhart, 1986).

2.2. Effect of spatial synaptic arrangement on dendritic integration:

clustering and supralinear integration

The distributed connectivity model presented above has been
challenged by findings in several brain regions, including the
hippocampus and the cerebral cortex. As detailed in Section 2.4,
an increasing number of studies have shown that synaptic
contacts can group together within a short stretch of the dendritic
branch, forming anatomical clusters2 (Makino and Malinow, 2011;
Yadav et al., 2012) and/or create functional clusters whereby
several neighboring synapses are activated synchronously (Fu
et al., 2012; Kleindienst et al., 2011; Takahashi et al., 2012), in the
absence of obvious spine density changes. This patterned spatial
synaptic arrangement along with concrete evidence of dendritic
spike generation both in vitro (Ariav et al., 2003; Häusser et al.,
2000; Kim et al., 2012; Larkum and Nevian, 2008; Losonczy and
Magee, 2006; Makara and Magee, 2013; Nevian et al., 2007;
Schiller et al., 2000a) and in vivo (Lavzin et al., 2012; Major et al.,
2013; Smith et al., 2013), are not accounted for by the distributed
connectivity and linear integration model, challenging the
traditional view of synaptic weight-based learning. An alternative
theory entails that, changes in the spatial wiring of synaptic
connections together with dendritic excitability modulation, can
serve as additional memory reservoirs in the brain (Chklovskii
et al., 2004).
2 As shown in Fig. 1, there are two major types of synaptic clustering: (a)

anatomical clustering, whereby spines form morphologically distinct groups of

several spine heads located in distances less than 5 mm from each other and (b)

functional clustering, where spine density is uniform but nearby synapses (located

within 10–20 mm) are activated synchronously.
In particular, the spatial arrangement of incoming inputs within
active dendrites of both simplified (Mel, 1993; Poirazi and Mel,
2001) and biophysically detailed neurons (Poirazi et al., 2003a,b)
was theoretically predicted to influence the dendritic and neuronal
output by differentially engaging local conductances. For example,
synchronous activation of synapses within the same apical branch
(hereby termed in-branch localization, see Fig. 1) of a biophysically
realistic pyramidal neuron model was predicted to result in
supralinear responses while stimulation of the same number of
synapses distributed in different branches resulted in linear
summation (Poirazi et al., 2003a). This prediction was verified
experimentally in L5 neocortical pyramidal neurons (Polsky et al.,
2004), highlighting the effect of synapse placement on neuronal
output. Supralinearity in this case resulted from the induction of
dendritic spikes, a phenomenon that was not seen when synapses
were stimulated across different branches.

Similar supralinearities were also found in oblique dendrites of
CA1 pyramidal cells, upon stimulation of synapses within
individual radial oblique branches (Losonczy and Magee, 2006).
In this case, synchronous stimulation of nearby synapses
(mimicking functional clustering, see Fig. 1) had the same effect
as synchronous stimulation of the same number of synapses
distributed uniformly within the branch (in-branch localization),
suggesting that these structures act as single, nonlinear integrative
compartments, as predicted by previous modeling work (Poirazi
et al., 2003a,b). These dendrites have also been suggested to act as
coincidence detectors (Ariav et al., 2003; Gómez González et al.,
2011; Losonczy and Magee, 2006) or as detectors of asynchronous
bursty inputs (Gómez González et al., 2011), via the induction of
fast or slow, respectively, dendritic spikes. Evidence of such
independent integrative compartments provides support for a 2-
stage model of neuronal processing (Katz et al., 2009; Poirazi et al.,
2003b), with multiple implications with respect to information
processing (for a recent review on the 2-layer model, see Jadi et al.
(2014)).

The placement of synapses at different parts (proximal vs.

distal) of dendritic branches has also been predicted and
experimentally evidenced to influence dendritic and neuronal
responses (Behabadi et al., 2012; Branco and Häusser, 2011). For
example the amplitude of EPSPs and the supralinearity of electrical
integration during the stimulation of multiple synapses varies
from the base to the tip of a single dendrite. The tip displays both
higher EPSP amplitude, higher gain, and higher EPSP supralinearity
compared to the base or the middle section of the dendrite (Branco
and Häusser, 2011). Moreover, the amplitude and threshold of
basal dendritic spikes is affected by the positioning of excitation
along the dendrite (Behabadi et al., 2012). Distal excitation lowers
the threshold for dendritic spike generation in more proximal
inputs, while proximal excitation lowers the threshold and
increases the voltage gain of distal inputs.

In sum, models and experiments have shown that the location
of any given synapse influences its effective ‘‘weight’’ (i.e. its
impact on dendritic and neuronal depolarization), since co-
activation of neighboring synapses will result in a much larger
depolarization than if the particular synapse is activated in
isolation. These findings suggest that the spatial organization of
synaptic contacts is also likely to have a key role in plasticity
processes that underlie learning and memory formation, as
detailed in the next session.

2.3. LTP cooperativity in nearby inputs

Beyond spatiotemporal integration, dendritic depolarization
and dendritic spikes have a strong effect on Long Term Potentiation
(LTP), a form of synaptic plasticity which is believed to play a key
role in learning and memory formation. In CA1 pyramidal neurons,
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local synaptic depolarization that results in dendritic spikes can
induce LTP even in the absence of somatic spiking (Golding et al.,
2002; Hardie and Spruston, 2009). In addition, this form of LTP is
stronger when paired synaptic inputs are both located in the apical
dendrites than if they are separated in the apical and basal trees.
This suggests that the large and long lasting dendritic depolariza-
tion generated by the activation of spatially proximal synapses is
more effective in inducing strong LTP than the pairing of dendritic
input with back-propagating action potentials. Where does this
difference stem from? Possibly from the ability of spatially close
synapses to undergo plasticity in a cooperative manner.

Cooperativity is the ability of multiple activated synapses to
collectively overcome the threshold for plasticity and is a
characteristic property of LTP that is presumed to be mediated
by NMDA calcium influx (Bliss and Collingridge, 1993; Sjöström
et al., 2001). Synaptic input which leads to LTP in dendrites
initiates complex biochemical signaling cascades in the dendritic
region, triggered by the influx of calcium and the elevation of its
local concentration (Baudry et al., 2011). Some of these pathways
facilitate the cooperativity of LTP at nearby synapses, and this can
lead to the coordinated potentiation of neighboring synapses, thus
promoting synaptic clustering. For example, the MAPK (mitogen-
activated protein kinase) and mTOR (mechanistic target of

rapamycin) cascades remain active for several minutes after their
initial activation (Wu et al., 2001). This prolonged activation allows
the spread of proteins and kinases to nearby synapses, thus
facilitating their plasticity. The Ras GTPase, which is part of the
MAPK signaling pathway and is correlated with increased spine
volume during LTP induction, has been shown to spread and invade
nearby spines (Harvey et al., 2008). In addition, the RhoA GTPase
was found to spread out of stimulated dendritic spines undergoing
structural plasticity related to LTP for about 5 mm along the
dendrite (Murakoshi et al., 2011). These molecular mechanisms
support the cooperative potentiation of synaptic clusters at the
spatial scale of <20 mm and are detailed in several excellent
reviews (Hering and Sheng, 2001; Patterson and Yasuda, 2011;
Winnubst et al., 2012).

Another mechanism that enables local cooperativity of LTP is
the activation of ‘silent’ synapses. Silent synapses contain only
NMDA receptors and are blocked by Mg2+ions when the local
membrane is in its resting state. Activation of nearby synapses,
however, can remove the Mg2+ block, allowing these synapses to
become conductive. Under a Hebbian plasticity protocol, this could
eventually lead to the insertion of AMPA receptors in the synapse,
thus ‘unsilencing’ the synapse (Liao et al., 1995).

Clusters can also be formed by the addition of new synapses
near existing ones (Fu et al., 2012), which effectively changes the
wiring diagram, however such changes are typically slower as they
require the restructuring of neural tissue (Chklovskii et al., 2004;
Trachtenberg et al., 2002). Since both synapse formation and
elimination are processes that persist in the adult brain
(Trachtenberg et al., 2002), it may be possible that LTP
cooperativity interacts with synapse formation or the conversion
of filopodia to dendritic spines and biases the formation of
anatomical synaptic clusters.

The abovementioned evidence indicates that LTP cooperativity
in nearby synapses can lead to the formation and stabilization of
functional and anatomical (Fig. 1) clusters of synapses within
frequently stimulated dendrites. This clustering may serve as a
mechanism for effective wiring, whereby connections are estab-
lished by sharing protein products, thus saving energy and
molecular resources, while at the same time dendritic non-
linearities are fully exploited via the selective induction of
dendritic spikes (Winnubst et al., 2012). Based on this evidence,
the clustered plasticity hypothesis has been put forward, which
proposes that inputs with correlated activity patterns (presumably
sharing some functional features), are more likely to be organized
in functional and/or anatomical clusters within the dendrites of
pyramidal neurons (Govindarajan et al., 2006; Harvey and
Svoboda, 2007; Poirazi and Mel, 2001). This view has gradually
been gaining experimental support, through the advent of modern
imaging methods which allow the detailed mapping of synapses in
dendritic arbors. In the following section we summarize the most
important experimental findings that support this hypothesis.

2.4. Experimental evidence for synaptic clustering

2.4.1. Anatomical clustering

Evidence for anatomical synapse clustering was first shown in
the dendrites of the adaptive microcircuit of the barn owl auditory
localization circuit (McBride et al., 2008). Barn owls reared with
prismatic spectacles develop an adaptive zone that does not exist
in normally reared animals and is a result of the animal’s abnormal
experience. The experimenters found both increased clustering
(contacts located within <20 mm) of axodendritic contacts
(potential synapses) in the adaptive zone (presumably a result
of the physiological and behavioral adaptation caused by the
abnormal experience of the prism) and decreased clustering in the
normal zone, indicating that dendritic synapse clustering is
correlated with this type of learning (McBride et al., 2008).
Importantly, the total number of contacts per dendrite remained
constant throughout the experiment, indicating that synaptic
contacts were both created and eliminated. Thus, reorganization of
the local circuitry during development is accompanied by synaptic
clustering.

Assessing the connectivity between neuronal populations with
advanced fine-scale circuit mapping methods has also provided
evidence that, during development synapses tend to cluster in
dendritic domains. Specifically, Druckmann et al. (2014) found that
the connectivity between the CA3-CA1 hippocampal neurons is
highly structured and clustered both at the neuronal and at the
dendritic branch level. By examining pairs of neurons that shared
the same neurogenesis and synaptogenesis time window, the
authors found exceptionally high anatomical synaptic clustering
(five times larger than ‘‘normal’’ or ‘‘random’’ clustering),
indicating selective and highly clustered synapse formation
between neurons which share the same developmental history.

Anatomical spine clustering has also been documented during
learning. By imaging the formation of spines in motor cortex
dendrites, Fu et al. analyzed the spine changes that occur during
the learning of a motor task that was repeated over multiple days
(Fu et al., 2012). During this learning protocol, the majority of new
spines that were formed in adjacent positions in the dendrite were
more clustered than control spines (in distances <5 mm), and the
process was dependent on the activation of NMDA receptors. This
study showed that newly formed spines, are highly likely to be
added to the existing clusters, thus contributing to the refinement
or reinforcement of motor learning. In addition, clustered spines
were more stable than isolated ones, implying that the arrange-
ment of synapses in clusters may promote the stability of long-
term memories. Increased anatomical clustering of potentiated
synapses has also been observed in an in vitro study which
simulated spaced learning in the hippocampus (Kramár et al.,
2012).

Further evidence for anatomical synapse clustering has been
provided by the in vivo visualization of plasticity-induced receptor
trafficking during learning. Makino and Malinow (2011) used
fluorescently tagged glutamate receptor type 1 (GluR1) subunits to
visualize the trafficking of AMPA receptors during normal sensory
experience as well as during sensory deprivation (whisker
removal). Normal experience (e.g., whisking) triggers coordinated
trafficking of GluR1 subunits to nearby synapses in the dendritic
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tree of somatosensory neurons in mice. The authors estimated the
size of synaptic potentiation at approximately 8 mm of dendritic
length. The clustering of GluR1 subunits was not evident on
sensory-deprived mice, indicating that rich sensory experience
results in higher clustering. In addition, mutations in GluR1
subunits that render them insensitive to modulation signals
induced by LTP cooperativity prevented the coordinated potentia-
tion of nearby synapses in dendritic branches.

Anatomical clustering has also been documented in the primate
cortex (Yadav et al., 2012). Analysis of the locations of spines in the
prefrontal cortex of rhesus monkeys confirmed the preference for
spatial spine clustering. The clustering of spines was concentrated
in the terminal branches, which receive the majority of synaptic
inputs and the clusters were found to predominantly contain
mushroom and stubby-shaped spines.

Finally, an imaging study about memory consolidation after
sleep provides new evidence regarding the compartmentalized
allocation of spines (Yang et al., 2014). This study showed that
different learning tasks cause spine formation on different sets of
dendritic branches after sleep consolidation. The formation of
these spines depended on the reactivation, during sleep, of the
same population of neurons that were active during learning,
suggesting that sleep may promote learning and enable the
allocation of synapses encoding for different memories to different
dendrites.

2.4.2. Functional clustering

Co-activation of neighboring synapses in the absence of
profound differences in spine density, termed functional cluster-
ing, has also been documented both in vitro and in vivo, during
development and as a result of learning. Using calcium imaging,
Kleindienst et al. (2011) investigated the connectivity and
activation patterns in organotypic cultures of the developing
hippocampus of rats. The authors found that synapses located
within a distance of 16 mm had correlated activity, indicating that
synapses tended to activate in clusters. This clustered activation of
nearby synapses was crucially dependent on neuronal spiking and
NMDA receptor activation. In this particular study no evidence was
provided regarding the possibility or exclusion of anatomical
clustering of co-active synapses.

In vivo imaging also allows the functional mapping of active
synapses. By visualizing the synaptic activation of neurons in the
barrel cortex of mice, Takahashi et al. found that activated
synapses tended to form functional ‘assemblets’ which were
synchronized and locally confined (Takahashi et al., 2012).
Specifically, nearby spines were found to be significantly co-
activated and tended to form functional synaptic clusters which
consisted of groups of synapses (2–12 synapses within <10 mm) in
dendritic branches. The spines which participated in these
assemblets were larger in size compared to spines that did not
form assemblets, indicating that assemblets might have been
formed by LTP mechanisms. Indeed, the authors found reduced
clustered activation of synapses in tissue that was cultivated in the
presence of NMDA receptor antagonist. Moreover, the authors
found that the clustered activation results from the concurrent
activation of afferent axons which impinge on the synapses. The
fact that these afferents synapse in a clustered fashion indicates
that synaptic plasticity may have molded a synaptic cluster
through either remodeling of the connectivity (i.e. the creation of
new synapses) or through the cooperative potentiation of synapses
that happened to be proximal to each other.

Overall, the large number of studies providing experimental
evidence for both anatomical and functional synaptic clustering
(some examples are shown in Fig. 2) suggests that clustering may
be a common pattern of organization conserved across different
brain areas and species (DeBello et al., 2014).
2.4.3. Functional properties of neighboring synapses

In addition to identifying the presence of anatomical or
functional synaptic clusters, a number of mapping experiments
have examined the coding or tuning features of neighboring
synapses in sensory cortices. These experiments show that
synapses in nearby spines do not necessarily share the same or
similar sensory tuning features as one would expect, but instead
the tuning of synapses varies widely along the same dendritic
branch without an apparent orderly arrangement. More specifi-
cally, combining high-speed 2-photon imaging with electrophysi-
ological recordings in the visual (Jia et al., 2010), auditory (Chen
et al., 2011) and barrel (Varga et al., 2011) cortices, it was shown
that synapses on nearby spines in dendrites of pyramidal neurons
code for seemingly unrelated orientations, sound frequencies or
whiskers and whisker combinations, respectively. These findings
appear to contradict the hypothesis of synaptic clustering, which
predicts that synapses, which carry correlated information, would
form functional synaptic clusters in dendrites. This contradiction
can be reconciled with the clustering model, however, if we accept
that functional clusters of synapses do not code for a continuum of
elementary sensory features (e.g. subsequent letters of the
alphabet) but for combinations of such features which form
conceptual entities of behaviorally relevant natural stimuli (e.g.

words). For example, a functional synapse cluster in the primary
auditory cortex could be composed of synapses that are tuned to
the frequencies contained in natural speech. As these frequencies
vary over a wide range, the tuning of synapses in a functional
synaptic cluster which would respond to natural speech would
thus reflect this wide range of frequencies. It would be interesting
to investigate experimentally the spatial organization of synapses
in response to presentation of combinations of input features that
are relevant to the animal (e.g. frequencies contained in
behaviorally relevant sounds) to test this hypothesis.

In sum, the experimental evidence provided above suggests
that, although synaptic clustering remains an active area of
research, there is considerable evidence for spatial synapse
clustering, either anatomical, functional or both, as a result of
learning. As described in Section 2, this clustering provides
advantages for memory storage by, for example, ensuring the
propagation of ‘strong’ or ‘important’ signals as opposed to noise
via the facilitation of nonlinear responses and dendritic spikes.
Further experiments are expected to clarify the roles of distributed
and clustered connectivity, as well as the range of its functional
implications.

2.4.4. A cautionary note

It should be noted that dendritic function and plasticity have
been studied at different spatial scales and therefore the role of
synaptic clustering in enabling dendritic braches or stretches
inside them to act as computational elements remains unclear. On
the one hand, whole dendritic branches have been proposed to be
elementary units of memory function and storage (Branco and
Häusser, 2010; Govindarajan et al., 2006). The level of compart-
mentalization of function and plasticity in this case is limited by (a)
the extent in which local signals can be integrated nonlinearly (e.g.

in order to generate dendritic spikes) and (b) by the spatial spread
of biochemical signaling which would allow cooperative plasticity.
In this context, dendritic ‘subunits’, which represent electrically
independent thin terminal branches (receiving the bulk of
incoming synaptic connections, Megıas et al., 2001), have been
studied theoretically and shown to provide an additional level of
computation in the cell (Archie and Mel, 2000; Jadi et al., 2014;
Migliore et al., 2008; Poirazi et al., 2003b; Wu and Mel, 2009). This
model is corroborated by experiments which show nonlinear
synaptic integration at distances <40 mm (Polsky et al., 2004) and
studies of synaptic tagging which find LTP cooperativity within



Fig. 2. Evidence for synaptic clustering. (a) Top: Observation of functional synaptic clusters ex vivo. Color rate code is the frequency with which these ‘‘assemblets’’ are

activated. Bottom: Probability of observing co-activated spines as a function of the inter-spine distance compared to chance level (shaded), as observed in vivo in the mouse

barrel cortex. Reproduced with permission from (Takahashi et al., 2012). (b) Co-activation of synapse pairs in a developing hippocampal neuron observed ex vivo as a function

of the distance between pairs of synapses. Reproduced with permission from (Kleindienst et al., 2011). (c) AMPA enrichment is correlated in nearby synapses, as observed

using a fluorescently tagged AMPA receptor in vivo. Reproduced with permission from (Makino and Malinow, 2011). (d) New Spines formed during learning a repetitive motor

task are more likely to form clusters. Additionally, clustered spines have a higher survival rate over a 16-day period. Reproduced with permission from (Fu et al., 2012).
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dendritic segments <60 mm (Govindarajan et al., 2011). Impor-
tantly, both synaptic integration and synaptic plasticity at
dendritic subunits have been found to be relatively isolated
between branch points (Govindarajan et al., 2011; Polsky et al.,
2004). On the other hand, the computational properties of smaller-
scale synaptic interactions which occur at <20 mm have also been
theorized to provide computational advantages in learning (Mel,
1992), pattern discrimination (Mel, 1991) and orientation tuning
(Mel et al., 1998) and such synaptic arrangements could arise from
STDP (Iannella and Tanaka, 2006).

It is yet unclear how the properties of synapse clustering at the
microscopic level affect the dendritic-subunit compartmentaliza-
tion. However, the experimental evidence discussed in Section 2.4
shows that the spatial arrangement of activated synapses within
dendritic branches is, in many cases, neither uniform nor random.
More experiments are needed to clarify how this spatial clustering
influences the ability of dendritic subunits (whether branches or
stretches of a branch) to act as independent computational
elements.

2.5. Plasticity of dendritic excitability

In parallel with synaptic clustering, synaptic activity can change
the conductance of ionic currents which determine the excitability
of neuronal membranes. This dynamic adaptation of intrinsic
excitability can influence the way dendrites integrate synaptic
inputs and consequently affect the neuronal output. Lasting
changes in excitation properties are a form of plasticity called
plasticity of intrinsic excitability, which can be induced by electrical
stimulation in vitro, or through exposure to an enriched
environment. For instance, A-type currents are persistently
downregulated after LTP-inducing excitatory stimulation of CA1
pyramidal neurons, leading to increased dendritic excitability
(Frick et al., 2004). In addition, LTP and LTD protocols in CA1 result
in the increase and decrease, respectively, of the linear summation
of postsynaptic responses. This bidirectional plasticity of excit-
ability reflects changes in the hyperpolarization-activated Ih

currents and NMDA receptors (Wang et al., 2003). In the latter
study, while blockade of both Ih and IA channels had similar effects
in increasing the linearity of synaptic summation, the increase in
summation that follows LTP was mainly attributed to modulation
of Ih.

The plasticity of intrinsic excitability can be locally restricted to
dendritic branches via alterations in branch coupling strengths:
repeatedly triggering dendritic spikes in a dendrite in vitro leads to
a slow but long-lasting increase in the coupling strength of the
dendrite to the somatic depolarization which is mediated by
downregulation of A-type potassium currents (Losonczy et al.,
2008). The regulation of dendritic excitability may thus be
exploited as a compartmentalized memory storage mechanism
during learning. Indeed, it has been shown that exposure of rats to
an enriched environment leads to the enhancement of dendritic
spike propagation selectively in a subset of dendritic branches of
CA1 neurons (Makara et al., 2009).

In the above-mentioned studies, the localized alteration of
dendritic excitability was attributed to the activity-dependent
regulation of ionic currents. It is not clear however if the plasticity
of dendritic excitability requires synaptic input or synaptic
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plasticity. To investigate this issue, a recent study tested the
plasticity of dendritic excitability using photostimulation of
hippocampal dendrites in neurons infected with a channelrho-
dopsin-2 (ChR2) vector (Labno et al., 2014). Interestingly, the
pairing of dendritic photocurrent with somatic spiking induced
localized depression of excitability. This depression was not
dependent on synaptic activation or LTP induction, but was
sensitive to calcium. Moreover, the depression was conferred by
changes in the A-type potassium current, similarly to the case of
branch strength potentiation. These two examples suggest a key
role of the A-type K+ channel in regulating the local intrinsic
excitability of pyramidal neuron dendrites.

Taken together, these results indicate that dendritic excitability
is a dynamic property which can undergo long-term potentiation
or depression in response to specific stimulation protocols, and it
can be dissociated from synaptic plasticity. Therefore, the
plasticity of dendritic excitability can serve as a mechanism that
modulates localized synaptic activity and contributes to localized
memory storage, so that it can be considered part of the memory
engram (Legenstein and Maass, 2011; Papoutsi et al., 2012;
Sjöström et al., 2008; Zhang and Linden, 2003).

Overall, in Section 2, we provided compelling evidence that
both synaptic plasticity and the plasticity of intrinsic ionic
conductances enhance the flexibility of dendritic responses,
endowing dendritic branches, or even membrane stretches inside
them, with key computational features that support a pivotal role
in memory formation. The molecular processes that may underlie
such a model of localized information storage are discussed next.

3. Synaptic consolidation and protein capture

The mechanisms which determine the effect of synaptic
plasticity and the resulting changes in connectivity on memory
formation are numerous and complex. Indeed, the induction of
synaptic plasticity involves networks of signaling cascades and
kinase activation which have timescales that vary from seconds to
hours (Bhalla, 2011; Citri and Malenka, 2008). Nevertheless, a
high-level model of memory consolidation can capture important
aspects of memory encoding and its protein dependence. The
synaptic tagging and capture model, described in the next section
is such a powerful framework for characterizing the role of late-LTP
processes in memory encoding and provides the foundation for
models of localized, clustered memory storage (Govindarajan et al.,
2006; Rogerson et al., 2014).

3.1. The synaptic tagging and capture (STC) model

According to the model of synaptic tagging and capture (Frey
and Morris, 1997; Redondo and Morris, 2011), the consolidation of
synaptic potentiation which is believed to underlie permanent
memory storage occurs in a number of phases. Initially, synaptic
plasticity sets a local synaptic tag in the synapse targeted for
potentiation or depression. The synthesis of plasticity related
proteins (PRPs), which are required for synaptic potentiation, takes
place over a period of hours after learning. Finally, the synapses
that were tagged capture the synthesized PRPs in order to stabilize
their synaptic strengths.

The synaptic tagging and capture (STC) model was initially
proposed based on LTP experiments showing that protein-
synthesis-dependent LTP could be induced under conditions of
protein synthesis inhibition, given that stimulation of a different
pathway occurred within a few hours (Frey and Morris, 1997;
Reymann and Frey, 2007). The phenomenon was observed by the
facilitation of late-LTP in weakly stimulated synapses through the
activation of a second strongly stimulated set of synapses (Frey and
Morris, 1997). Weak stimulation normally results in early-LTP, a
form of LTP that decays after a few hours. As a consequence of the
strong stimulus, however, weakly stimulated (but tagged) synap-
ses – which would normally only express early-LTP – can capture
the PRPs generated by strong stimulation of the second set of
synapses and thus express late-LTP, as observed in synaptic cross-
capture experiments (Redondo and Morris, 2011; Sajikumar and
Frey, 2004).

The implications of the STC model for learning and memory
concern the interactions that are expected to arise between
learning events that occur within a defined time horizon. This
interaction was tested in behavioral experiments which involved
pairing a weak learning protocol with a strong form of learning or
environmental novelty. By pairing a weak learning protocol, which
normally induces short-term memory, with environmental novel-
ty, it was found that novelty – considered a strong learning event –
promotes the formation of long-term memory, presumably
through the mechanisms of STC (Ballarini et al., 2009; De Carvalho
Myskiw et al., 2013; Moncada and Viola, 2007). Indeed, the
memory enhancement was prevented when the protein synthesis
inhibitor anisomycin was introduced along with the environmen-
tal novelty. These experiments suggested that there are alternative
sources of memory-related proteins needed for late-LTP, some of
which can be localized within dendritic branches as discussed in
the next session.

3.2. STC and local protein synthesis

Synaptic plasticity involves numerous kinases, phosphatases, as
well as various molecular signaling pathways (Citri and Malenka,
2008), the activation of which may be spatially constrained. This
suggests that molecular signaling cascades may underlie the
cooperativity effects observed in plasticity induction within
nearby sites in dendrites (Bhalla, 2011; Govindarajan et al.,
2011; Harvey et al., 2008; Murakoshi et al., 2011). In addition, the
PRPs required for plasticity can be synthesized by the protein
synthesis machinery existing in the cell soma, or they may be
translated locally by ribosomes which exist in dendritic arbors.
Several studies have established the existence of ribosomes, in
hippocampal dendrites (Bodian, 1965; Bourne and Harris, 2011;
Steward and Levy, 1982; Sutton and Schuman, 2006). These
ribosome complexes were found to be near synaptic sites, thus
positioned appropriately to facilitate plasticity. Moreover, a large
number of mRNAs have been found in hippocampal dendrites and
many of those mRNAs code for known synaptic proteins (Cajigas
et al., 2012; Steward and Schuman, 2007). This evidence suggests
that dendrites may support local forms of plasticity that do not
depend on transcription or somatic protein synthesis by sustaining
their own protein synthesis which is triggered by local signaling
pathways. Dendritic protein synthesis was first identified to be a
requirement for rapid synaptic potentiation under exposure to
BDNF (Kang and Schuman, 1996) and has since been found to be
required for many forms of synaptic plasticity (Sutton et al., 2006).

Based on these observations, it has been proposed that the
phenomenon of STC may occur at the dendritic level. In this case, it
can lead to LTP interactions and to the generation of activity
associations at the dendritic level, via the strengthening and
stabilization of neighboring synapses, thus facilitating synaptic
clustering (Govindarajan et al., 2006; Kelleher et al., 2004;
Rogerson et al., 2014). A recent in vitro study confirmed that
STC can take place at the level of the dendritic branch
(Govindarajan et al., 2011). Using glutamate uncaging and two-
photon imaging, it was shown that local protein synthesis induced
in a synaptic spine could convert the early-LTP of a nearby spine to
late-LTP via synaptic capture mechanisms. This conversion of
early-LTP to late-LTP was dependent on the time interval between
the stimulation and protein synthesis and on the distance between
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the two spines. The strength of this synaptic cross-capture was
inversely proportional to the distance and it did not occur for
distances larger than 70 mm on the same dendritic branch or larger
than 50 mm when the synapses were placed in sister branches. In
addition, the authors found that during LTP consolidation, tagged
synapses compete for the capture of available proteins, indicating
that the availability of synaptic proteins is a limiting factor for
dendritic STC.

It should be noted, however, that certain forms of LTP require
gene transcription along with protein synthesis, such as the long-
term LTP induced during theta burst stimulation and serotonin
application in hippocampal slices (Huang and Kandel, 2007). It is
thus possible that different forms of LTP are employed by different
brain areas, and/or under different stages of memory consolidation
(Izquierdo et al., 2006), which could lead to differential spatial
distributions of potentiated synapses (i.e. clustered vs. distributed).
While this is the dominant view of the role of protein synthesis in
learning and memory, there are alternative views where protein
synthesis plays a more passive role. Protein synthesis may be more
peripherally involved in the formation of memories where it is
needed to replace proteins ‘consumed’ by learning or the inhibition
of protein synthesis impairs the general well-being of neurons,
leading to an inability to deliver resources needed for memory
formation (Gold, 2008; Routtenberg and Rekart, 2005). This view
suggests that protein synthesis is necessary to just replenish
resources that are depleted by memory formation mechanisms.

3.3. STC and memory formation

An intriguing consequence of dendritic STC is that it can become
a mechanism for associating temporally close memories, which are
expected to form memory representations captured by nearby
synapses. This mechanism would result in the generation of
functional and/or anatomical clusters of synapses that code for
memories that are temporally related over large time frames,
defined by the temporal overlap between the life time of the
synaptic tag and the upregulation of PRPs. According to such a
model, the cross-capture of proteins between synapses that
express either LTP or LTD can lead to clustered formation of
memory engrams (Govindarajan et al., 2006). As described by
previous modeling work, clustered formation of memory engrams
whereby synapses with correlated activity are grouped within
dendritic branches greatly expands the information storage
capacity of neural tissue (Poirazi and Mel, 2001). Moreover,
synaptic clustering resulting from STC has been hypothesized to
mediate the cellular and behavioral binding of memories that are
temporally related (Rogerson et al., 2014; Silva et al., 2009). More
studies are needed to investigate the validity and consequences of
this hypothesis.

4. Plasticity of inhibition influences dendritic integration

The vast majority of plasticity studies have focused on the
plasticity of excitatory connections. However, a significant body of
recent work has shown that inhibitory connections are also plastic
(Huang et al., 1999; Kullmann et al., 2012), and follow the patterns
of excitatory contacts (Chen et al., 2012).

Inhibition plays a major role in shaping neuronal output
throughout the brain, and displays significant variability in its
magnitude and targeting (Klausberger and Somogyi, 2008). For
example, dendritically-targeted inhibition regulates the input–
output-transformations in CA1 pyramidal cells and increases the
threshold for dendritic spiking, while perisomatic inhibition
controls oscillatory activity and suppresses the amplitude of
dendritic spikes (Jadi et al., 2012; Lovett-Barron et al., 2012). Thus,
neurons can tailor their output by adjusting the location of
inhibition that they receive in different dendritic pathways.
Importantly, computational modeling suggests that local inhibi-
tion can regulate the plasticity of excitatory connections, by
controlling calcium influx through the postsynaptic voltage (Bar-
Ilan et al., 2012). Indeed, somatostatin-expressing inhibitory
neurons exert local compartmentalized control over the Ca2+

signals within individual spines, in a way that can directly affect
the biochemical signaling of plasticity processes (Chiu et al., 2013).
Inhibitory synaptic boutons, on the other hand, have been found to
be unstable and are believed to continuously probe the postsyn-
aptic membrane for synapse formation (Schuemann et al., 2013).

In relation to the clustering hypothesis, a recent study
examined the dynamics of inhibitory synapses along with the
dynamics of spines in the mouse visual cortex (Chen et al., 2012).
The authors found that inhibitory synapses made on dendritic
spines were more dynamic than inhibitory synapses on dendritic
shafts. Importantly, these spines followed closely the arrange-
ments of other dynamic spines within �10 mm which were
presumably excitatory, thus indicating that inhibitory synapses
exhibit the same clustered plasticity pattern of excitatory
synapses. In addition, inhibitory synapses in spines had different
remodeling kinetics during altered sensory experience. These
findings show that inhibitory synapses closely follow the spatial
arrangement of excitatory synapses, and therefore they are likely
to form anatomical clusters with them.

The coordinated plasticity of excitatory and inhibitory connec-
tions has been suggested to play a major role in the stability of
simulated cortical networks, where a ‘‘detailed balance’’ of
excitation/inhibition is required (Vogels and Abbott, 2009).

5. Regulation of synaptic plasticity by local homeostasis

Apart from inhibition, homeostatic plasticity is another major
balancing mechanism which acts continuously to regulate synap-
tic plasticity in the long term. The effect of homeostatic regulation
on synaptic clustering and dendritic excitability is thus critical in a
model of memory formation where dendritic branches play a key
role. Homeostatic phenomena include changes in the intrinsic
membrane excitability, the regulation of presynaptic transmitter
release, the balancing between excitation and inhibition as well as
alterations in neuronal connectivity and modulation of synaptic
strengths (Turrigiano and Nelson, 2004). As the focus of this review
is synapse clustering, we briefly discuss evidence regarding local
homeostasis taking place within dendrites. For a more in-depth
discussion on homeostatic plasticity mechanisms we direct the
reader to a number of excellent reviews (Abraham, 2008; Pozo and
Goda, 2010; Turrigiano and Nelson, 2004).

Homeostatic plasticity can be local, thus regulating only the
synapses located within a specific branch (Rabinowitch and Segev,
2008). Such specificity may be critical for the maintenance of
existing memory engrams during the continuous formation of new
ones. Recent studies have identified forms of homeostatic
plasticity which operate at the level of the synapse and/or the
branch. Hou et al. found that increasing the presynaptic firing that
drives a synapse, caused a selective downregulation of GluA1
receptors in the postsynaptic site (Hou et al., 2011). This indicates a
synapse-specific homeostatic regulation mechanism that com-
pensates for increased synaptic input. Another study used a
combination of two-photon glutamate uncaging and imaging to
show that individual synapses can compensate for changes in their
input via homeostatic regulation that is independent of their
neighboring synapses (Béı̈que et al., 2011). In this case, homeo-
static plasticity was found to require the immediate early gene Arc,
which is known to be implicated in synaptic plasticity. The
functional role of localized or synapse-specific homeostatic
plasticity is not straightforward, as it seems to be a rule that
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counters the action of LTP in individual synapses, thus leading to
erasure of information. A computational study, on the other hand,
has shown that a local form of homeostasis which acts on groups of
nearby synapses in dendrites can mediate normalization of
responses without disrupting synaptic plasticity (Rabinowitch
and Segev, 2008).

Along with the homeostasis of excitatory connectivity, homeo-
stasis of inhibitory connections acts in concert with synaptic
potentiation to regulate the strength of inhibition (Echegoyen
et al., 2007). At the dendritic level, the dynamic interplay between
excitatory and inhibitory synaptic inputs depends on their spatial
proximity (Liu, 2004) while at the synaptic level AMPA receptor
expression at single synapses is homeostatically regulated under
conditions that increase either inhibition or excitation (Hou et al.,
2011). The latter indicates the ability of synapses to self-regulate
their synaptic potency.

How homeostasis, synaptic plasticity, plasticity of excitability
and plasticity of inhibition interact to regulate the action of
synapses at the dendritic level is not clear, as these processes have
different timescales and roles. Intrinsic excitability appears to
positively enhance Hebbian plasticity, while homeostasis provides
a form of negative feedback to synaptic action (Sjöström et al.,
2008). Interestingly, dendrite-specific LTP coupled with homeo-
static depression was computationally predicted to maximize the
learning capacity of a medial temporal lobe model implementing
online learning (Wu and Mel, 2009). The dendritic learning rules
led to an order-of-magnitude increase in the capacity of the
network compared to Hebbian learning.

Homeostatic mechanisms provide the final touch in the delicate
interplay of local and global factors that oversee the formation of
memory representations, starting at synaptic mechanisms and
including dendritic, neuronal and network processes. In the
following section we discuss how computational models can be
used to dissect and/or integrate the roles of different plasticity
mechanisms in neuronal function and memory formation.

6. Computational modeling of memory-related neuronal
functions: the role of active dendrites and synapse clustering

Computational models have been instrumental in the quest to
understand memory functions and particularly the role of synaptic
and dendritic processes in memory formation. In this section we
review some of the most important computational models that
have been proposed over the last few decades to underlie learning
and memory formation in the brain. We focus on models taking
into account active dendritic processes and plasticity mechanisms
that may influence both the strength and the spatial arrangement
of synapses.

6.1. Computational models investigating the role of synapse clustering

in neuronal function

The ability of neocortical pyramidal neurons to selectively
respond to spatially inhomogeneous patterns of synaptic activa-
tion (i.e. randomly distributed vs. spatially clustered activation of
synapses) was first predicted by Bartlett Mel, using computational
modeling (Mel, 1991, 1992, 1993), and was termed ‘‘cluster
sensitivity’’. These early studies identified the boosting provided
by the clustered spatial arrangement of synapses and predicted a
key role of NMDA conductances in this phenomenon. This effect
was found to be robust for a wide range of distributions of active
conductances in dendrites. In addition, the author identified the
conditions which would cancel the effects of clustering, namely,
the high resistance of spine necks, the large synaptic conductances,
and the high baseline levels of activity. The advantage of synaptic
clustering in the form of in-branch localization (whereby co-active
synapses were positioned uniformly within a given branch) for the
discrimination and memory capacity of neurons was studied by
the same group later on, using theoretical neuron models (Poirazi
and Mel, 2001). When dendritic nonlinearities and in-branch
localization were taken into account, the pattern discrimination
capacity of simplified model neurons and neural networks
expanded dramatically, suggesting that synapse clustering could
serve as a mechanism for maximizing storage capacity in the brain.
Moreover, dendritic nonlinearities and in-branch localization were
also predicted by the same group to underlie translation-invariant
orientation tuning in visual ‘‘complex’’ cells (Mel et al., 1998). This
latter work was the first to predict a key role of dendritic
supralinearities in orientation tuning of single neurons in the
visual cortex, a prediction that recently received experimental
support from in vivo experiments (Lavzin et al., 2012; Smith et al.,
2013).

A follow-up study using a detailed biophysical model of a CA1
pyramidal cell was able to tease out the mathematical formula
underlying ‘‘cluster sensitivity’’. The authors found that the
terminal apical dendrites of these neurons summate synaptic
inputs nearly independent from each other, using a sigmoidal (or
thresholding) activation function (Poirazi et al., 2003a). This
prediction has been verified experimentally for the basal dendrites
of cortical pyramidal neurons (Polsky et al., 2004) as well as the
radial oblique dendrites of CA1 pyramidal cells (Losonczy and
Magee, 2006). Moreover, this finding led to the proposal of a ‘‘2-
layer’’ model of neuronal integration, according to which, the firing
rate of a CA1 pyramidal neuron in response to a large range of
synaptic stimuli can be predicted by a two layer mathematical
abstraction, in which terminal dendrites act as independent
nonlinear thresholding units whose combined output goes
through a second thresholding unit at the cell body (Poirazi
et al., 2003b). This 2-stage model was recently demonstrated to
match the processing of basal trees in cortical pyramidal neurons
(Behabadi and Mel, 2014) and has received experimental support
based on anatomical findings in CA1 pyramidal cells (Katz et al.,
2009). For an extensive discussion on the 2-layer neuronal model
please see an excellent recent review (Jadi et al., 2014).

An extension of the 2-layer hypothesis put forward by Hausser
and colleagues entails that the interaction between proximal and
distal integrative regions of a pyramidal cell may allow for an
additional layer of integration, which is multiplicative in nature
(Häusser et al., 2003). A different augmented version of the 2-layer
model for cortical pyramidal neurons, where basal and apical tuft
regions are treated as independent compartments and dendritic
responses depend on the spatial arrangement of both excitatory
and inhibitory inputs is put forward in (Jadi et al., 2014). Finally,
based on the ability of dendrites to release neurotransmitters and
neuromodulators, it has been proposed that a neuron may have
multiple outputs, with each dendritic subunit performing local
integration. In this model, morphology and biophysical properties
determine the hierarchical arrangement of dendritic subunits
(Branco and Häusser, 2010; Ludwig, 2005).

Overall, the above are a few modeling studies that establish the
role of dendritic nonlinearities, which are maximally expressed
when synaptic contacts are activated in clusters, in the functioning
of neuronal cells and circuits.

6.2. Computational models investigating the role of dendritic

nonlinearities and synapse clustering in memory functions

The functional implications of synapse clustering and dendritic
nonlinearities which relate explicitly to memory functions have
also been modeled in a number of computational studies. Models
that included plasticity mechanisms are discussed in the next
session. In a single cell model of a layer 5 PFC pyramidal neuron,
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working memory was simulated via the induction of persistent
(beyond the end of the stimulus) activity. It was found that
positioning of synapses near the tips of the basal dendrites
increased the probability of persistent firing due to the generation
of larger, NMDA-dependent, dendritic spikes (Sidiropoulou and
Poirazi, 2012). Similar findings were seen at the microcircuit level,
whereby NMDA-dependent dendritic spikes were predicted to
support persistent activity induction within a group of just a few L5
PFC cells. In the absence of NMDA dendritic spikes, the size of the
network required to support persistent activity, the cellular
correlate of working memory, increased dramatically (Papoutsi
et al., 2013, 2014). In a computational study using realistic
neuronal morphologies and active properties, Migliore et al. (2008)
examined the role of active dendrites of CA1 neurons in the binding
of multiple inputs which arrive at their radial oblique dendrites.
Their results suggest that CA1 neurons have a preferred number of
radial dendritic inputs that maximizes their capacity to recognize
multiple features and propose a link between this number and the
well known limitation of short term memory to seven items.
Finally, another computational study investigated the role of
dendritic function in the spatial working memory circuit by
varying the mode of nonlinearity and the configuration of
inhibition (Morita, 2008). In this case dendritic compartmentali-
zation enabled the formation of accurate memory that was
dependent on the contrast of the external input, but not its
intensity. The requirement for this was the existence of either
tuned global dendritic inhibition or local dendritic inhibition tuned
with global somatic inhibition.

It should be noted that none of the above mentioned studies
incorporated synaptic or dendritic plasticity rules. Neuron models
with nonlinear dendrites that implement realistic plasticity rules
can help investigate memory-related phenomena that go beyond
working memory and make predictions about the properties of the
resulting memory traces (Clopath et al., 2008; Cutsuridis et al.,
2010; Govindarajan et al., 2006; Legenstein and Maass, 2011;
Morita, 2008). While the mechanisms of these plasticity rules are
not entirely known, models can incorporate simple phenomeno-
logical abstractions to study their effect in memory. Only few
studies, however, have explicitly examined how active dendritic
properties in combination with local plasticity rules can shape
memory engram formation.

Wu and Mel explored the capacity of the monosynaptic
pathway from Schaffer collaterals to CA2 pyramidal dendrites
for ‘‘online’’ (one-shot) learning (Wu and Mel, 2009). This study
found that dendritic-specificity of LTP, along with homeostatic
depression, enables efficient memory utilization. The learning
rules which enabled this CA3-to-CA1 system to perform online
learning include a dual-threshold LTP, sparse synaptic plasticity,
binary synaptic weight values and the co-occurrence of homeo-
static depression and LTP as all-or-none phenomena. Using a
model of nonlinear dendrites in combination with the branch
strength potentiation (BSP), a computational study showed how
nonlinear dendrites could be used to bind combinations of
multiple features in dendritic subunits (Legenstein and Maass,
2011). The branch strength potentiation rule induced a competi-
tion between dendrites, which allow a neuron to become part of
multiple memory traces. In this model, branch strength potentia-
tion enables neurons to specialize in the binding of specific
combinations of input features, which could represent the unique
characteristics of objects. By inducing competition, a single neuron
is thus able to store multiple such combinations in separate
dendritic domains. Another recent study examined the implica-
tions of the spatial patterning of plasticity proteins in memory
using a simplified model of memory consolidation with dendritic
domains (O’Donnell et al., 2014). The spatial patterning of protein
synthesis led to the consolidation of memories selectively, even
when other events occured simultaneously and were represented
by the same neuronal populations. Based on this function, the
authors proposed a model for selective memory generalization
during sleep.

6.3. Creating predictive models of dendritic function

Reliable and predictive modeling of dendritic properties and
function requires that models can be constrained well by
experimental data. As the study of dendrites is an active area of
research, our knowledge of dendritic function and synaptic
plasticity is only partially complete. For example, both the size
and the spatial extent of functional and/or anatomical dendritic
synapse clusters can only be inferred with imaging methods such
as calcium imaging, immunolabeling or electron microscopy
(Kleindienst et al., 2011; Makino and Malinow, 2011; Takahashi
et al., 2012; Yadav et al., 2012). Similarly, the temporal constraints
related to synaptic capture, plasticity protein production and
homeostatic mechanisms can be found in relevant studies
(Govindarajan et al., 2011; Hou et al., 2011; Losonczy et al.,
2008). Although recent research has provided a wealth of data at an
unprecedented level of detail, much remains to be discovered
regarding particular aspects of memory storage. For example, the
extent of LTP cooperativity, the protein dependence of LTP
consolidation, the ability for dendritic protein synthesis, the
molecular basis of synaptic tagging are parameters that crucially
affect the properties of memory formation. However, even with
our current knowledge of these mechanisms, we can generate
predictive models of memory formation. As knowledge accumu-
lates, these models will be continuously refined, generating more
interesting and accurate predictions. Their ability to integrate data
and mechanisms that operate at different levels, as well as to
separately characterize the contribution of each of these mecha-
nisms, will not only further our understanding of memory
functions but also point to new avenues for experimental
investigations.

7. Perspective

A large body of experimental studies has recently revealed
detailed information about the existence and possible manipula-
tion of memory representations at the cellular level (Silva et al.,
2009; Josselyn, 2010; Rogerson et al., 2014). In parallel, multiple
lines of evidence suggest that the plasticity underlying learning
and memory acts at multiple levels: fast spine dynamics are
shaped by synaptic activity, dendritic branch excitation properties
are regulated by activity and homeostatic mechanisms, neuronal
excitability is affected by previous learning, etc. (Fig. 3). To
complete the picture, the excitability of networks is also controlled
by several factors including the plasticity of GABA-mediated
inhibition. These findings challenge the old view whereby
synapses are considered as independent and elementary units of
plasticity. Dendritic branches now emerge as semi-independent
units of function and plasticity (Branco and Häusser, 2010). The
observation of functional and/or anatomical synaptic clusters
within dendritic branches implies that synapses may act in groups,
formed by cooperative plasticity and local protein synthesis, which
exert a nonlinear effect on the output of the cell (Mel, 1992; Mel,
1993; Poirazi et al., 2003; Poirazi and Mel, 2001; Govindarajan
et al., 2006; Rogerson et al., 2014). The size of synaptic clusters and
their spatial extent can be defined based on observations. The
limited experimental evidence that is currently available suggests
that even clusters of 2 synapses are functionally relevant (Fu et al.,
2012; Takahashi et al., 2012). Based on a variety of biochemical and
electrophysiological data, we can at least estimate the spatial
proximity necessary between synapses to receive facilitation of



Fig. 3. Memory allocation across multiple temporal and spatial scales. (A) Increased CREB levels (orange outline) make these cells more likely to be engaged in the formation of

upcoming memory representations (yellow cells). Engagement of cells in memory leads to increased CREB levels for a given time period (orange outline), increasing the

probability that these cells will take part in subsequent learning (yellow/blue cells). This does not happen if learning occurs much later (brown). (B) Intrinsic plasticity

mechanisms can regulate excitability locally in branches (e.g. branch strength potentiation) allowing neural cells to compartmentalize storage. Additionally, synaptic tagging

and capture that depends on nuclear protein production (green arrows) can enhance cooperativity across branches. (C) Synaptic crosstalk and plasticity cooperativity act

locally in branches, enabling the formation of synaptic clusters (top, purple arrows). Additionally, synaptic tagging and capture that occurs within branches can allow the

binding of different memories/features in clusters (bottom, green arrows). (D) Homeostatic processes act in longer timescales, fine tuning synaptic integration, normalizing

excitation and balancing excitatory and inhibitory inputs in order to prevent runaway excitation or silencing of neurons.
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plastic events. Examples include LTP facilitation due to shared
protein synthesis within 50–70 mm of a dendritic branch (and its
sister) (Govindarajan et al., 2006, 2011) and diffusion of activated
GTPases within 5–10 mm within a dendritic branch (Harvey and
Svoboda, 2007; Harvey et al., 2008; Murakoshi et al., 2011;
Murakoshi and Yasuda, 2012).

The effect of synaptic clustering on neuronal output is in turn
modulated by intrinsic plasticity mechanisms that modify the
excitability properties of dendritic branches where groups of
synapses reside (Zhang and Linden, 2003). The emerging picture

suggests that clusters of functionally related synapses, which are

formed within dendritic branches under the influence of local

activity-dependent and homeostatic mechanisms, are likely to serve

as a key computational and memory storage unit in the brain. The
time is ripe for undertaking the obvious challenge, namely to
design experiments that test the implications of this idea at the
behavioral level.

For example, it would be critical to know whether manipula-
tions that do not disrupt canonical synaptic plasticity processes,
but interfere with dendritic synaptic clustering alter or disrupt
learning and memory at a behavioral level (Lavzin et al., 2012).
Furthermore, is there a clinical consequence of abnormal
clustering for episodic memory in animals and humans? For
example, episodic memory representations require a certain
degree of independence from each other to allow for accurate
pattern separation and specificity. At the same time, memories
must be richly connected for a sequence of experiences to be
recalled together. Excessive or hyper-connectedness between
each memory may result in the activation of overlapping
networks of neurons, dendritic branches or synapses for every
memory. This is likely to lead to a lack of pattern separation
between memories and poor episodic recall or even catastrophic
forgetting (i.e. interference between all memories resulting in no
recall). In contrast, if events are too sparsely connected, memory
for individual details might be extremely accurate but the general
context and relatedness between items will be lost. These
extremes can be captured by either over- or under-clustering of
synapses, or neurons related to a set of memories (Fig. 4).

Predictions can be made for performance profiles that lie along
the clustering continuum. On the extremes, over-clustering should
present as an increase in associative thinking but with poor
episodic memory due to a lack of pattern separation and increased
interference between memories. Schizophrenia is characterized as
having a looseness of association of ideas (Bleuler and Zinkin,



Fig. 4. The Impact of Clustering on Neurological Disease. Clustering in the normal cortex is balanced between the benefits of associativeness and distinctiveness of episodic

memories. Memories are spatially segregated with a moderate degree of overlap. Over-clustering between memories predicts reduced spatial segregation, decreased

resolution of individual episodic memories, and the intrusion of remote associations as seen in schizophrenia. Under-clustering is characterized by autonomous spatial

arrangements that increase the capacity for distinct episodic memories at the cost of reduced relatedness between memories and/or knowledge domains, as seen in autism.

These principles are represented above, in which three distinct memories that share a temporal context are represented in red, blue and green. The Venn diagrams illustrate

the general concept of under-clustering in autistics, average clustering in normally-developed brains, and over-clustering in schizophrenics. Synaptic level cross-talk between

intracellular signaling cascades during synaptic tagging and capture is illustrated. Dendritic level clustering shows the degree of spatial segregation of synapses within a

dendritic branch that results in the formation of multiple processing units. At the cellular level, distinct memories may be allocated to networks of neurons whose overlap

may predict the degree of relatedness between them.
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1950), and patients perform better than controls on tasks that
favor highly associative thinking (Manschreck et al., 1988;
Poljakov, 1973). However, on tests of episodic memory, specifically
pattern separation, schizophrenics typically perform poorly (Das
et al., 2014). This is what would be predicted if the associative
memory deficit were due to over-clustering. In this case, the
encoding of new events activates a normal spread of neurons or
dendrites in a network. However, with each subsequent episodic
event, a highly redundant, overlapping network is activated,
causing interference between events. Consequently, cueing a
single event stimulates recall of multiple memories and perfor-
mance fails.

In contrast, too little clustering would produce normal or even
superior episodic memory for individual items, but poor contex-
tual or relational processing. In the case of autism, numerous
studies show that performance on recognition memory tests of
individual items using a variety of nonsocial stimuli is unimpaired
and occasionally superior in autistic patients compared with
normal controls (Boucher et al., 2005; Bowler et al., 2000; Salmond
et al., 2005; Williams et al., 2006). On the other hand, autistics have



G. Kastellakis et al. / Progress in Neurobiology 126 (2015) 19–3532
difficulty with integrative thinking and contextual processing,
such as using semantically-related words to probe contextual
processing (Bowler et al., 1997, 2010; Smith et al., 2007), or
categorical information to improve recall of semantically-related
words (Smith et al., 2007). The extreme case of savants is a
profound example of a highly localized knowledge that does not
generalize nor associate to any other knowledge domain within the
individual (Treffert, 2009). Mechanistically, rather than a string of
events clustering together to create contextual and temporal
meaning, each new experience would stimulate a separate and
autononomous pattern of activation, which could strengthen
access to each event, and weaken connectivity between events.
This could explain how individuals with low cognitive skills and
poor performance on some intelligence tests might still display
talent in a restricted domain (O’Connor and Hermelin, 1988).

Although these hypothetical, clinical examples of over- and
under-clustering have little direct evidence as to their mechanistic
explanation, they point to the need for computational models that
capture the complexity of nonlinear dendritic properties and make
predictions that can be tested in behaving animals and humans. In
years to come, experimental and theoretical approaches will have
to work side-by-side in unraveling and testing hypotheses
concerning the basic dendritic rules that underlie the formation
of memory representations in the brain.

In the last twenty years a plethora of approaches, including
transgenic mice, have established the importance of stable long-
lasting changes in synaptic function in learning and memory (Lee
and Silva, 2009). We are now able to explore the behavioral
implications of dendritic processing rules. This daunting task will
require all of the tools at our disposal, including new computa-
tional approaches, optogenetics, in vivo 2-photon imaging, in vivo

whole-cell and dendritic recordings, multi-electrode high resolu-
tion recordings, etc. We will also need to develop new behavioral
tools specifically designed to test the implications of changes in
the electrophysiological and structural properties of dendrites,
imaging methods paired with neuroinformatics tools that will
allow us to track and characterize the dendritic activation
patterns of neuronal networks in behaving animals, molecular
tools that will inducibly manipulate individual synaptic molecu-
lar components in single synapses of spine clusters, fluorescent
tags that will make it possible to image the very molecular events
that trigger, filter, stabilize, modify and maintain synaptic
clusters, etc. Importantly, all of these developments may only
be a heart-beat away (if not here already). Experimentalists will
need simple and predictive computational models that they can
use to design the behavioral-based dendritic clustering experi-
ments that seem impossibly complex today, but that undoubtedly
will be routine tomorrow. It is both sobering and enormously
exciting that the tools and results described here are bringing us
closer than ever to understanding one of the greatest mysteries of
all times: how experiences shape our memories and the very core
of who we are as individuals.
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